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NATIONAL ADVISCRY COMMITTEE -‘FOR AERONAUTICS

- RESEARCH MEMORANDUM

THE CALCULATION OF DRAG FOR ATRFOIL SECTIONS AND
- BODIES OF REVOLUTION AT SUBCRITICAL SPEEDS

By Max. A. Heaslet end Gerald E. Nitzberg

SUMMARY

A method 1s developed for calculst” :g ths dreg, in a real
compresgible fluid and at suberitical Mach numbhers, of airfoll
sections at arbitrary lift coefficients and of bhodies of revolu—
tion at zero angle of attack. To apnly ths method it is necessary
to know the velocity distribution for airfoils and the velocity and
thickness distributions for bodiss of revolution, together with the
Mach number of the free-stream transition point from laminar to
turbulent flow, and ths Reynclds number based on chord or axial
length. The method coneists of tracing the growth of momsntum
thickness along the surface, for both the laminar and turbulent
boundary layers, by means of relations which ihvolve elementary
integrals and can bs evalusted by simple numericel mesnas. An .
outline of the computational procedures reguired for drag calcula—
tiona is presented in the avpendix to the reporkt.

The valuss of drag coefficient, computed by the method of the
present report for a number of cases, arg compared with the values
obtained for the same configurations by other methods and the Jdif-
ferences between the various results are found to lie within the
limits of accuracy of current experimental techniques. ' The use of
the present method is recommended by its simplicity and generality.

; INTRODUCTION

Starting with the work of Prandtl (reference 1}, which was
designed to determine the skin friction on & pointed flat plate in
a uniform incompressible two-dimeneional flow, the theory of drag
calculations has been extended by severa’ inveatigators so that,
under controlled conditions and at speeds where eir msy be assumed
an incompreasible medium, very good agresment hes besen obtained
with expsriment for both airfoil gections and gtreamlined bodles
of revolution. The calculation of drag is, however, limited to
cases for which it is possible to eastimate the location of the
transition point, that is, the point at which the laminar boundsry
layer over the forward portion of the body is terminated by the

<ASEReS
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onset of tufbulent-flow; and fgr.whiaﬁ there ia mo extensive sépara—T
tion of the turbulsnt boundary layer.

In the present report the compreesibility of the msdium is
considered and expressions for profile drag of alrfoll sections
end bodies of revolution at subcritical Mech numbers are given in
forms which are particulsrly amenable to numerical calculation.
The principal contribution, however, is contained in the treatmsnt
of the turbulent boundary layer in the two cases. As in previous
work on this subject, the snlutions consist essentially of inte—
grals of the Kdrmén moment .1 eguation for bodies in itwo-dimensional
flow and for flow over three—dimensional bodles with axial symmetry.
In reference 2, Squire and Young svlve the problem for incompressible
flow in two dimensions by means of a voint-by—point method of
integration requiring considerable labor, and in references 3, L,
5, and 6 modifications 3f thé Squire and Young method are given in
various forms which expedite the calzulations. All these references
give rosults which are in close agzreoment. The method of Kelikhman
in reference 6 is of particular interest for it is capable of
generalization to the body of revolution and to the cass of high—
speed flow where density «hanmes are of sufficient magnitude that
they must be taken into gecount. This approach is adopted in the
present report. '

The various proceduree which have been developed for predict-—
ing the growth of the turbulent boundary layer over an ajrfoil are
all based on the same boundary-layer mementum equation. In order
to apply thils equation it is necessary firat to relate the skin-
friction coefficient to the boundary-layer momentum thickness. On
the basis of exverimental data for flat plates two such relationships
heve been evaluated: a power law (reference T) and a logarithmic
lew (references 8 and 2). After comparison with the experimental
data shown by Falkner in reference 7, for Reynolds numbers between
2 x 10% and 5 x 107, it eppears that there s little significant
difference in the numerical values of these two relations, when the
scetter of the oxperimsntal deta is taken into consideration. The
logarithmic law cen be generalized casily to the case of compress—
ible flow and is used in the analysis of thise report.

The logerithmic relationship between the ekin—frictlon coeffi— .
cient and the boundary-layer momsntum thickness was combined by
Squire and Young with the boundary-layer momentum equation to
obtein the section drag of airfoils. Tha step-by—step integration
of the fundemental equation was firast avoided in roeference 4 where
1t was found that a considerable simplification can be achieved by
dividing the velocity distribution over the alrfoil iInto segmentsa
in each of which the chordwise velocity gradient 1s relatively
constent. Then, using an average value of the velocity gradilent
for each sogment, it was found possibls to construct a general graph
from which the solution for any velocity distribution cen be read.
The awthors of the present report were able to generallize the method
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of reference k to ths case of compressible flow over airfoll sections
but -the results beve nover beon published. It was thought that the
closed form in which thé present results are glven, together with
the duality which it wae possible to establish between the two— and
three—dimenaionsl cases, mok: the latier approach preferable.

The power law relstiionship postuleted by Falkner has been used
in refersnce 3 by Holt to cbtain a directly integrable relation for
the turbulent boundery-lasyer growth. By means of a theoretlcal
approach based on experimental results Tetervin {reference 5)
related the skin—friction coefficient and boundary—layer momentum
thicknese in & more complex form which varied with the boundary—
layer Reynolds mumber. Approzimeting this expression, over the
range of integrastion, by 2 power law, Tetervin was able to express
the growth of the turbulent layer in s mannsr scmewhat analogous
to that of Holt. The final forms resulting from this mesthod of
approach share with the present results for the turbulent layer the
edvantage of being in closed form. In refersnce 9 Tetervin has
extended his method to include both two—~ and three-dimensionsal
compressible flow.

In the vicinity of the airfoll lesding edge there is always
a more or less extenslive region of laminar boundsry-layer flow.
For airfoils at Plight Reynolds numbore the laminar portion of the
boundery lsyer contributes a minor portion of the total ssction drag;
howsver, the amount is ususlly not negligible, In reference 10,
Young a.nd. Winterbottom preeent a method for laminar boundery—layer
calculatione which includee compressiblility effcects. - Ths derivation
of their method ie comparable to that of reference 1l. There are,
however, two significant differences: First, roference 10 1s based
on Pohlhasusen'e relationshlp for ths velocit ty variation through the
boundery layer, whlle refercnce 11 uses the Blasius velocity profile;

and, second, reference 10 neglecte the fact that for sir Prandtl's
number is not equal to unity. The method of reference 11 is used

in the present repcrt.

Most of the thsoretical and experimental work on bodies of
revolution to date has besn on airship shapes. With the present
trend, howsver, toward leorgs land-based elrplanes, particularly
those with pressurizsd cebine, 1t is to bé expécted that fuselage
shapes wlll aporoach bodies of revolution. The problem of studying
the boundary-layer growth and the drag of bodies of revolution thus
"tokes on increased significance while at the same tlims it becomes
necessary to generalize the procedure to include the effects of
comprossibility. The development of the laminary boundary layer
over bhodies of revolution in a compressible fluld is given in
refersnce 11 and the theory glven there 1s applied directly in ths
presont report. The momsntum equation of the turbulent boundary
layer is given by Ycung in reference 12 for zero angles of incldence
end a step-by-step msthod of integration is presented whereby the ]
growth of the boundary layer mcy be determined for incompressible P

st i
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flow. The boundary-layer equations, for both turbulent and laminar
flow, are more complicated for the body of revolution than for an
alrfoll section because of the fact that i1s is necessary to take
into consideration the variation of the body radius along the axis.

Drag calculations for bodies of revolution have not been
studied as extensively as for airfoils and 1it€le previocus work in
ths fleld of compressible flow has as yet been published. The
present theory 1s similer to that developed for airfoil sections
in that momentum loss in the boundary layer is expressed as a
definite integrnl but differs in that it becomes necessary to modify
the theory over the far =ft portion of the body. TIn spite of this
d1fficulty the method given does curtail eharply the amount of time
required for the total calculation..

A complets ligt of s&mbols; as ﬁseﬁf%ﬁfbﬁéhou%’tﬁlé“rejﬁit,'
moy be found In Appendix A, arnd tho computational procedure for
drag calculations is presonted in Appendix B.

ey | - -
" Airfoll Sections

Introductory remarke.~ In figure 1 the two-dimensional flow
about an alrfoil section is indicated along with the boundary layer
and woke assoclated with the flow. It ie an establighed practice,
in all theory connected with the calculation of drag, to divide the
boundary layor znd wake region into three different regimes of flow,
Thus, 1f S represents the ptagnation point, thoe boundary layer
botween S and the transitlon point at T.P. on elther surface is
lominar while between T.P. and the tralling edge at T.E, a turbulent
boundary layer exilsts. In the wake, the third region to be
censidered, the plans AA is drawn normal to the center line of the
wake at the polnt where static preesure in the wake has returned to
its original free-stream value.

It is easy to show, from momontum considerations, that if
statlc pressure is assumed constant across the wako, then the dreg
D per unit length of tho alrfoil is given Dby

= [, ou(U, - u)dy _ - (1)
wvhero the integration extends acrosg the waoke in plane AA and
u  local velocity in wake
s} density in wake

U, wvelocity of undisturbed stroam
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¥ distance messured normal Xo center line of wa.ke

Momsntum 'bh* ckness of the boundary lsyer is, by dsfinition,

- ._.9=f059u<__dy 2)
where

U velocity at edge of boumdary layer

u _ local wvelocity in boimd.ary layer

¥ distance measured normal to surface

_9 momenbum thickness of boundsry layer

& Yboundsry-layer thickneés ‘

py density corresponding to velocity U

and in a similer mesnner the momentum thickness of the wake may be
defined. WNow let

92=fw

<1 . %) &y | (3)

where the Integration is in pla.rie AA and p, is density corresponding
to free—stream velocity U,. Since drag coefficlent cg ie fixed

by the relation

ools

D = Cd_ E p U (h’)
vhere ¢ 1is the chord length of the airfoll, it follows that

oy = aga {5)

The analyeie consiste essentially in tracing the growth of 8 ,
the momentum thickness, along the top and bottom surface of the
airfcil and in the weske to the planse AA. Since the nature of the
flow in ths boundary layer affecte the rate of growth of the
momentum thickness, it 13 necessary to tresat the different regimes
separately. The following development ig therefores arranged to
conform with this natural divisiom.

Laminsr layer.— In refersnce 11, expressions have besn developed
which may be applied immediately to determine the growth of the
laminar boundery layer in two-dimensional flow of e compressible
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fluid. In thils reference the boundary-layer thickness &y at the
point x; 1is defined as the distance from the surface of the
airfoll to a point in the boundary layer where the ratio of the
local velocity to the velocity outeide the boundery layer is 0.707.
Neglecting terms involving the fourth power of M, where M is
the Mach number of the free stream, the boundary—laver thickness
dl is glven by the relation

(ﬂ)a S ;3f1.-o 35M2{1~l o1 (s }{
c . R %ﬁ) ~ l ~ \Up

{)(JCC)J. (U—U-f'le(ag oLk Mgf\ ) ( 10,17 (.JE) (6a)

(3]

where . R

Reynolds numbar b&sed on chord length

Uy velocity outslds buundarJ layer at point x3
U  velocity outside boundary layer at point x
x distance along airfoil chord

In the computation'of section drag copfficients, inasmuch as
the laminar portion of the boundary layer contributes a minor
portion of the total drag, it la practicable to simplify this
eguation. Thoe modification will concern itself with the last term
in equation (6a) and is Justified by the fact that the last term

contributes a small part to the total valus of the boundary-layer
. thicknoes squared. Approx*mnting the last term by the expression

(e @ o (D)
Ug
equation (6a) may bo rowritten as

(8 i o L2

ffg)l( %;)s..l-r a(g) .(6b)
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Agsin neglecting terms invoiving the fourth power of M, 1t is
possible to show from resulis given in the reference that if

Prandtl's number Pr = 9—%“-‘ is set equal to 0.723, its value for

free aﬁr, then

\%‘E’g -0.0821\1+061M [1_131(U1>}! (1)

In thse ca.lcula.tions that follow the basic variable will be the
nondimsnsional product of momentum thickness and density. The
valus of this variable at the point x = x3, Independent of ths
definition of boundary-layer thiclmesa, is an irmadiaste ccrsequence
of equations (6b) and (7). Thus

0. . ~21)
( U>-R/§>9111+026M {—_1_092< h
) : |

( )8""'a(x/c) (8)

Turbulent layer.— The momentum equation for the turbdbulent
boundary layer In comprescible flow 1s given in reference 10

as

5 T g, Cgl, _ T
%+E_(H+2)U-'+FU_—:[G--PF | (3)

where the primes indicate differentiation with respect tc x,

H is a function of the boundery-lasyer velocliy-profile shape, and
T 1s the skin friction per unit area. Undsr the assunmpiion that,
for compressible fluids,

T‘_T_s'wﬁ = 0.245h o ¢-as14t (10)

where

15

and . 1is the coefficient of viscosity at the wall, it is



possible to transfurm the eguatiun ta the fuan nced By Y.wng and

Winterbottom L LTl

+

%}% + 2,553 (B + 1)%'4 - -i%”- 10,4114 "B "0 3034E (11)

The mzmer“ca.l mothods used in the ‘Lntogra.tion of equation
(11) are somewhat protra._ctad_ To cbviato this 5nbrodul.e now the
traneformation

% = ”mgg ;2 = 0. 245h§é‘ 0.39L4§ - ‘. '(12)”

With this change of variabls, eguation (ll) becomes

dz . ¢ La(u/u )/d(I/P)] u_ Uoroc Pu
e + K (B+1)E O/Uo _I&Uo T B (13)

whexre
= 2.555 (c.zselh + %)
and the equation hes been wr*tten 3n nondimensional form.
It islnecessary in squation (17) to relate the valus of coef—

ficient of viscosity at the wall to its value in ths free stream
This follows directly frum ‘the ampir.‘ca.l rela.tion (reference 13)

e (__)o -

where TO and Tw are absolute termeratures in the stream and at
the wall, togesther with

Mo

—1
Ty = ‘I’O<l + 3——2—- Ma)

vhich is an immediate congequence of the assumption that energy is
congtant through the turbulent boundary layer. It follows that,
approximatsly, ) '

S Wy = up (1 o+ 0.152 MB) (14)
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Setting

.LT.=—E="‘E-"'
T U, 5, S Pre =%

and using the epproximation for coefflclient of viscosity, equation
(13) appears in final form ' . :

8z , x (me1) (QO/EK) 5 - x T B XFe (15)
ax } U {1 + 0.152 M2]

It is poseible to put the solution of equation (15) in & form
which is well edspted to calculations 1f conatant sverage values
are used for HE and K. Under this assumption, the integral of
the differential equation ia

5 ~K(H41) {c Re

16
Cr [1+0.152 M2] (16)

prU

y = —— K(H+1)+l&}

The variable §, in the.-turbulent region, lies roughly batween
20 and 30 so that the total veriation of K iIs sm=ll snd K hes
an average value approximately egual to 1.21. The shape factor
H wvaries, for & nonseparated boundary layer, approximatsly from
1.3 %o gbout 1.7, but from sxperience gained in other calculations
3t has been found that com: 1tations for low speeds are quite
insensitive to the value of H used and highly satisfactory -
resulte can be obtained for a2 constant value bf H. In the present
report K(H + 1) shall be set equal to 3. This assumes a valus of
H between 1.4 and 1.5 which is in conformity with low—speed
moasurecmsntas and, as shell be seen, will give compubed drags in
clogse agreomsnt with experiment and other calculations. There sre
no avalleble experimental messuremsnts of velocity distributéons
through turbulent boundary layers at high speeds of sufficient -
accuracy to permit the determination of the effect of compresseibility
on H. Lacking such information. the assumption will be made that
tho seme valuss for H can be used in the compresaible case as in
the incompressible cass. Imposing the condition thet at the transi-—
tion point =z = zm p_ , the arbitrary constant ¢ 1s determined end

the solution becomes

_ Tp.p.\ &, 1.21 R, /‘x e N
= () e x.p. oo

The density term in the integrand mey be evaluated by assuming
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the flow outside the boundary layer is 1sentropicj thus
-
B = (1 + 1._;1 M2 (1-732)] 7-1 (18)

The value of z at the transition point, which is required in
equation (17), must be found from the value of (55)7, p. determined
by equation (8). Since, in nondimsnsional variables,

£ = 2.555 anu 075 Re 9 P U)

[1+o 15? M2 ]

where _ in denotes natural logggithms, then

z = 1.60% w in3w (19)
Lo o §
v = 4,075 -] (20)

[1+0.152 M2]

Substituting from equation (8) into equation (20) thus gives w at
the transition point. In figure 2, which is a plot of equation (19},
the required value of zqp p, can be found. If the velocity distri-
bution over the airfoll and the free—stream Mach numbsr are known

it 1s now possible to substitute directly into equation (17) end
determine the growth of the boundary layer up t0 the trailing edge.

Wake .~ Young and Winterbottom in reflerence 10 have discussed
the momentum equation in the wake and have concluded on the basis
of what experimental data ars avail&ble, ‘that

= o =B . B T 8.2
Pz 62 = pT.E. GT.E. Up.g. (21)

where subscript 2 applies at plane AA in the wake and T.B. indl-
cates values at the trailing edge of the alrfoll.

From zp . the value of wp g, follows and the airfoil
section profile drag cosfficient is given by

o _
140.132 M2 SLE. g, 22 22
= [1+ 15 i 075 &, UT.E. (22)
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Bodiesg of Rovolutlon

Introductory remarks.- The development of the theory relating
to the celculation of drag for a body of revolution is direstly
camparable to the thsory prescnted above Tor airfoil sections except
that the angle of attack of the boiy will bs reatricted to zero.

In figurs 3 the body 1a shown; point S  repnesentirg tho stagnation
point, . T.P. indicating th» tra.r.sition point fn the planc of the
peper, T.E. denoting the t2il end of the body, snd ~A&% marking the
poeition of the plane where static rressurs has returned to its
vazlue in the ambisnt stre=n.

Drog coefficisnt of the body is by dsfinition

D
" =E§a 2€V)2/3 (23]
where i
D drag of body
U, velocity in the free stream
po Gensity in the free stream
v volwm>» of body
end, from considerstions of momentum,
D= 2:rr_£f ou(U, — u)y dyh | ek

where the lntegratlion extends asroes the wa.ke-in plaﬁs AA and
u local velucity in th2 wake

p density in the weke

¥y distance measured normel to center line of weoke

For bodies of revolution the momentum area ¢ which is definsd by
the equation

5 . =
b = 2x 2u (1 - l&) (r + 7 cos a)dy (25)
fo oyl U

where

el thickness of the boundary laysr

—m—— -
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r radius of cross section of body

a angle between tangent to generator and axis of body

occupies a role analogous to that of momentum thicknese in two—
dimensional airfoil theory. Momentum area in the wake, at the
pPlane AA, ls ' ' _

O = 2 f N LS [ ay. 26
2 13 W poly ( Ub;)y J ( )

whence
e

CD = -(_V)E7§ (27)

The theory which follows will also have occasion to use the
variable 6 which is related to the momentum ares by the
expression

6 = ¢/2mr (28)
or

L (1 - % )(1 + % cos cr.)_ dy (29}

Leminar layer.— From the theory developed in reference 11, the
laminar boundary--layer thickness 33, dsfined as in the two-
dimensional case, at an aerbitrary point x; 18 given, neglecting
terms involving the fourth power of M, by the expression

(%)é 7?-) l’r<r1> |
Lo ”dccwi@’ TRTe

vhere

5.3 ’l -0.15 MELl—l 91( ll

U, velocity outside boundary layer at point x3

R; Reynolds number based on length of body

r radiue of cross sgection of body

(305.)'
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x distance measured along axis

d; boundary-lsyer thicknsss as defined for equation (6a)

1 axial length of body

Since, in genera.l the lam.nar porticn of the boundary layer
contributes a sma....l part of the total drag and since the last term
in equation (30s) represents a small part of the valus given by

the relation, it is practiceble to derive a gimplification for
(81/1)2 analogous to equation (6b). Thua,

1-0.35 M2 [1_-1.6—7 (%)2]

1\

(éll)a @ >s.l7<r1/

et ot W g

|

I

[ SIORONS

It can elso be shown that -if Prandtl's numbsr is set equal
to.0.733 and if terma In M . of Pourth degree and higher are
ignored, then for the Tody of mval’zrtion the fol'F owing a.pproximate
relation is obta.insd . . .

(g;’g) 082:l+0611v12fl—131‘- U)}} (31)

Grouping momentum thickness a.nrl densitv togatnsr s a.n.d. in
nondimensional form, the followinz equation holds ’ '

(cpo) ——9—5‘3——( ) }1+026M[1 oge( )2:“

A __
[ CF@) () &

Turbulent layer.— The momentum equstion of the boundary
layer for a body of revolution in compressible flow 1s given
in reference 12 in the form
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g%(:pUU2®> + g% <pﬁu&§ = T 2nr
where

Ay displarement ares 1n boundary layer {see definition in list of
gymbols)

T gkin friction per unit of ares
Setting (A¥/®) = H reduces the equation for the boundary layer of

the bodles of revolution to a form similar to. that for airfolils.
Thus

ae | U, 2ulp. T
= +[(H+2) L2 ]fb - (33)

2
= UUE’“"

the primes indicating differentiation with respsct to X.

It shkhould be noted that the definit‘on of E differs in the
three—dimensional case from that in two dimensions. Howsver, in
the cese where the thicknses of the boundary layer is small in
comparlson with.the local radius of the body of revolution the two
ezpreseions for H are approximptely equal

The relation between T, p, U, and_mG” used_in the analysis
for airfoll sectlons was based on theory that held for a flat
plate; that ls, the pressurs gradients were lgncred in that
particular phase of the study. Since on bodies of revolution the
pressure gradients are small the same relation may be assumed to
hold, thus - g

Upy | o.a9148
Hw

= 0.2h5he (34)

where

2. o007

From equation (34) and the definition of @, it follows that

. o.s914

Upro
~m = 0.2b5k 2mr o (35)
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and substitution of this relation into equation (33) gives

U -2 —o0.8g%al
& 2555 o, zr] U
3 *2:555 | (B+1) TR mpo L0-MIf e
Now leat - -

z = —UEMSU [ (2 = 0.2hshy 20 9970

Direct substitution into eguation (36)yields

Az ¢ xl(m) ~UTTD/AU/L) | _a(e/i)/alx/t) ]

d@.) . U0, T/l
U.p,l
- & U Yofob fg
Ko B B
whero

2.555(0.391h +_§ =K.

and the equation is written in nondimensional form.

Setting

It
=
:
I
1
ol
K
fl
il

"

Uo
and using the relation _
uoll + 0.152 M2}

Her

the final form of eq_ua.tion (38) becomea

dz x| | (B:1) (’m/""‘) (/) , Jx TR
dx r |

[1+0.152 M®]

15-

(36)

(37)

(38)

(39)

Putting again K = 1.21, K(H+l) = 3 and f£ixing the erbitrary

conatant of integration by assuming thet z = 2p p, at x =

. p
it is poseible to express the solution of equation (39) in the

form
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- —  mam

Up pNa/Tp, p, .21 " | -
- e (B (55
X

1.21 By f — T4 —1.81
U3[1+0.152 ME2IFl-21 Ut T ax (%0)

The density term in the intsgrand s evalusted by means of the
expression

1
5 - [1 $ 5 we - ﬁ%]"l - (1)

The dstermination of =z from the known expression for

T.P.

glven by equation (32), proceeds as follows: From equation

(6p) ] _ |
(34) S _ _ - e

¢ = 2.555 In (h[gzz.iéegleU) |
whence B
z = 1.60k w 1n3 ' v
) _ . .
. MODR_ F57w .

-[1.+o.152 M2]

Thus, from equations (43) and (32) the value of w at the transi-
tion point can be found and zqm p, 1is obtalnable from figure 2.

With this information, togethsr with ths velocity distribution
over the body snd the frse.-gtreari Mach numbsr equation (40) can be
used to tracs the growth of the boundary leyar aft of the transi-
tlon polnb. - . T S S

[ — T iLamy

One difference arises in the computations for bodlee of revolu—
tion which distinguishes the theory from that for airfoil sections.
This is dus to the fact thet r vanishes at the tail of the body
and as & consequence an infinite singulsrity appears in equation
(40). Becauvse of this singularity it is not possible to carry the .
integration to the tail for momentum thicknesa will becoms Infinitely
large and the expression for drag coefficlent becomes an Ilndotermi-
nate form. To circumvent this difficulty it 1s necogsary to use .
equation (4O) up to some arbitrary point, say the 80-percent point
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of the axis, and then to modify the method of calculation. For
this purpose it ies convenient to compute the growth of momentum
area rgther than momsntum thicknsse over the lattar porti on of the
txz"bu__ent run.

Two means will be glven whereby the momentum ares can be )
calculated - The first, which is msrely an extenslon of rafersence 10
to the case of compresaible flow, involves g point~by—point integra.-
tlon of the basic differential equation. This equa.t‘on ig express-
ible nondimensionally in the form :

i @ &) ST
e , | (m2) & &7 |- (0.7911)" px ¥ —— (M)
ax T P UBo Ry v .

1n®
| A 0.Bh3k x 2dr X [1+0.152 M2]

The derivation of this expresslion may be obtained by combining

2
g2 = 20 -
3
and. :
' Uege _ 0.2454 2 r € 0'3.8.1-4-
to get =L
T a
T _ = (%'29_;1‘}; - ——t (45)
pUU B 2.1 e L

0.2454 x o F %x-[1+0.152 MET

which, together with equation (33), will give the required relation.

From the valus of G and T at the 80-percent point on. the
axia, the value of ¢ can be found at this polnt and the - growth of
% can then be calculated over the remaining portion of the body.
In particular, 17 Q!& is the value of '5 at an arbitrary point
X on the axis,

it 7 B +(g§> A(i) O (u8)

~ where '5n+-,_ is the va.lua of 3 at the po*nt T + A(E) The

calculation consists-of ‘repsated a.pplida.tions_of this relation.
As the interval A(Z)} in equation (46) gets smaller the result of
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the calculation approaches the exact solution of eguation (4k).

Since the above calculation ie to be applied over an interval
which is smsll in comparison with the axial length of the body, the
labor of such a calculaticn 1s much less than would be required if
such methods were applied to the total turbulent run. It is possible,
however, to shorten this calculation further by assuming that .
cp2x ¥ 18 a linear function of X .where ce = 27/p,U,® 18 the
local skin-friction coefficlent. The valldity of such an assumption
will be examined later in the discuesion.

Return now to equation (32). From the definition of skin-
friction coefficient the right-hand side of this equation is

oxpresslble &s - A . o .

oT D 2nfc :
T ooue? 0’3 (_) - 20 o b

If cf2n ¥ 15 1inear over the aft portion of the body, falling
from its value at the B80-percent point to zero at the tail, then
in nondimensional terms equation (33) can be written as

[(m)f_.,__ Lag_)] = 2 (oponT), l—x (48)

This equation can be integrated, and as a result

3 = t‘r’_(m?) 3_1 ‘[c +fg (cgen ¥) | (l—i)TIH d.'x'] (49)

When X = 0.8; % = 36 . N ST T _ o

so that ' e e

. - . H+
c=%_ _ 0 23

.8 0.8 c.8 . . —

Using this value of C, together with equation (49),

_ To.a) B2 ( Bo.a), 5(ce2x To.s ™ (1 21m Bag -
%.o (%) (B29)- oppie g (o0 e 00

0.8

and, after substituting from equation (47), the value of & at the
tail 18 given by the equation
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[ =366'B<§§;__. ) en T
e S\ k. pT E. 6.528 L L.OT5R; 6 P U)
SR [1+0.152 M2 ] o.8

- = 5 - 1.0
Po.as%, 8. /“ (1-%) (
ﬂTEUTE.a Jo.g

(51)
UT E.

Weke .- In reference 12 Young has integrated the momentum
equation in the wake applying the sams methods used in references -
2 and 10, for the body of revolution. If subscript 2 Indlcates
velues. of the varlables in the plans AA snd T.E. denotes values
at the tall of the body, then it is shown that

— = - . = 3.2
2% =7PpE. %.x Urx. (52)
Since, from equation (27)

. 2o,
b = —37

1t Pqllows that

= ;TES ITE~ Urptt . B3

\

DISCUSSTION

The feoregoing theory provides a convenient procedure for
studying the growth of lamdnar and turbulent boundary layers and ;
for calculating the drag coefficlents of .alrfoils and bodies of .
revolution. dJust as in the case of wind-tunnel testing, where 1t
is essential that the model tested be an accurate Tepresentation of
the originsl configuration, it is important that in the application
of this theory the operator should be able bto detérmine correctly
the required aeruvdynamio properties of the configuration undsr
consideraticn. - This implies that the pressure distribution over
the body and the extent of the laminar and turbulent layers bs
specified or be determinable. :
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Veloclty distributiona are an immedlate consequence of pressure
digtributions, for both low— and high-speed flow, soc that if sxperi-
mental data are availabls the calculations may proceed directly.

The theoretical calculation of the veldcity distribution corre—
sponding tca given shape is, on the other hand, a rather lengthy
process although such methods have been treated adequately in the
literature.  For an arbitrary girfoil section at any desired 1lift
coefficient the velocity distributign for incomprsssible flow can
be found by the methods of Theodorsen (reference 1k}, Allen
(reference 15) or Goldsteln (reference 16). For NACA conventional
and low-drag airfoils corresponding distributions may be found quite
easily from the tebular data glven in reference 17. At subcritical
Mach numbers the velocity distributions are calculable from low-
spesd data by moans of the well-known Glauert-Prandtl or Karman—
Tailen transformations. For the body of revolution, methuds have
been given by Young and Owen (reference 18) and Keplan (reference 19).

The theory for the determination of velocity distributions is
of course based on the assumption of pctential flow but, for "
airfoils, If the 1ift coefficient rather than angle of ‘attack is .
gpecified the calculations are sufficiently acrurate for most appli-
cationag. In refurence 20 it is shown that the effeoct of the presence
of a boundery layer is primarily to change the apparent angle of
attack of the alrfoll and to increase the local velocltics in the
vicinity of the trailing edge. A procedure 1s introduced in this
reference for estimghing the magnitude of the change in the trailing-
edge velocity brought about by the presence of the boundary leyer.
This procedurs first estimatss boundary-layer thickness from the
potential theory velocity distribution and can be used in conjunc—
tion with the thecry of the present report. In the calculsiion of
drag coefficient, however, the nature of thuv equation is such that
the total drag coefficient computed is mérely affected to a very
small degres by moderate changes in the trailing-edge velocity, and
as a copsequence such a refinemant is not used when only drag coerfi-
cient is to bu found.

The detsrmination of the location of the transition point from
laminsr to turbulent flow in ths boundary layer presents a diffi-
cult problem. At small Reynolds numbers and for smooth surfaces
transition occurg in a region cf dscreasing local volocitivs where
there 1s usually a region of separated laminar flow between the
laminar and turbulent portlions of the boundery laysr. However, at
Reynolde numbers greater than several million the length of this
‘region of separated leminar flow is of negligible extent so that 1t
‘1s possible tS consider tr nsition as occcwrring at e point. Experi-
mental flight teats of asmooth airfoliles with maximum volocity in the
vicinlty of ths midchord indicate that “trangition occurs when the
local laminar boundary—layor Reynolds number Ry. = ‘Udp/u attaine
a value of about 8000. The veiocity U 1is the local velocity
outside the boundary layer end 1t should bs noted in particular
that the characteristic length 4 used in evalmatlng this Reynolds
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numbsr is the value of & obtainsd by the equation for the laminar
boundary layer in the pressnt report. This transition criterion
applies strictly only to the determination of whether the tranai-
tilon point 1s shead of the meximum velocity point. For configura-
tions in which maximum velocity is as fsr back as ths midchord
pogition and for which the trensition Reynolds mumber occurs afi

of this point, 1t is probable that the transition point will be
close behind the maximm vslocity point. For emooth aelrfoils at
aengles of attack such that there is & sharp velocity peak in the
vicinity of the 1eading edgs, transitlon.occgurs behind the maximm
velocity point. . Theory and experimsnt indicate that in such cases
transition at lérge Reynoclde numbers ococurs only after the velocity
has decreaeed bétween 5 and 10 percent of ths meximum velocity. the
percentege of the velocity recovery befcre transition ocrurs beihg
greater the more slowly the velocitv deoreases in the chordwise
direction. -

. Thse preceding criter;a for thes location of the tremsition
point indicate the moat resxrward position that can-be expectsd,
that -i8, the probable position for smooth airfoils in low;turbulence
flow. When the surface under congideration ls rough or contains
guch transition—pramoting agents as protubersnces, waves, air
leakage, or dust particles shead of the transition polnt, as
predicted for idesl conditions, it 1s to be anticipated that transl—
tion will move forward in the direction of such. diaﬁurbances. In
the dmmediate vicinity of the stognation point, -howsver, there is a
very rapid acceleration of the alr so that any local d1sturbance
which is not sufficiently severe to-change the local velocity
distribution will be unable to cause transition to occur’ 1n this
reglon of very favorable velocity gradisent.

Ay

. There are not sufficient experimental dsta on the location of
the trensition point on bodles of revolution in lowaturbulence
flows. Lacking such information, the most reasoneble basis for
estimating the transition point on bodies of revolution sesms to
be .to use . the sams’ cr*ter-.'as previously presented for airfoils.

) Drag of Ajrfoil Soctions

In reference 2 the section drag coeffﬁcients, computed by the
method of that reoort are presented for an extensive range of
airfoll thicknsss—chord ratios, Reynplds numbers- and transition -
point locations. A representative group of these casea has been
recomputed by the methods of referene L; as well as the present
report, and the resulis of these cal-~ulstions are given in table I.
It 18 seen ir the table that the msximum 41 fFference existing betwesn
the three methods for obtaining -the drag coefficient is 0.0002 for
a single surface and is 0.000k for the totel drag coefficlent for
both airfoil surfaces. There is no apnarent consistency in the
nature of the deviations, however, and in only one case does the
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difference in total drag reach the value given above. Tho results
ofm&mmehmwMay%anhdwwﬂhmmewrﬁwmm2
since they are based on the same fundamental assumptions, bdut some
difference might be expected when commarisons are made with the
computations based on the present report because of the small
change in the shaps factor E and the averaging method used to
fix tho factor X. The agreement between the results should
therefore be considered highly satisfactory and a confirmation of
the compatidility of the assumptions.

The limits of accuracy of. current msthods for measwring
airfoll section drag coefficiente 1s of the sams order of magnitude
as the differences exlsting betwesn the various theoretical results
g0 that it ia not poseible to smay which of the calculations moat
accurately predicis experimental values. The weke—survey method 1is
now used commonly in ihe determination of experimental dreg coeffi-
cilent and it can certainly not be ssid to determine drag within the
limits nesded to establish the relative accuracy of the preceding
computations even though, for & given test configuration, it may
be possible Lo repeat measuremsnts to a higher order of accuracy.
Any experimental check ig also complicated by the problem of
locating the point of transition from the laminar to turbulent Plow
in the boundary layer. The previocusly montioned methods for . -
determining the transitior point cen easily err by a few percent of
the chord length on each surface, and this cen bring about an error
in the calculated section drag coefficient of the order of magni—
tude of 0.000k.

Very few experiments have been cohducted in which the location
of transition from laminar to turbulent boundary-layer flow on both
surfaces and the corresponding section drag coefficient were measured
accurately. In reference 2 the section drag coefficient
measured in flight is givern as 0.0080 for a 25~percent-~thick
section at a 11fi coefficisnt of 0.25 and a Reynolds number of
8.2 x 108, the transition points having bsen moasured end found to
be 36 and 20 percent of the chord length, from the leeding edge,
on the upper and lower surfaces, respectively. For this configura—
tion the following resulte are given by the variocus listed methods

for calculating airfoll section drag coefficients:

Mbthod o o Section drag coefficient
Experimental, Flight (referenc; 2) | | _ 0.0080
Squire and Young (reference 2) _ . _ . 0079
Nitzberg (reference 4) L0077
Holt (reference 3) ' _' - '.:“I;_ B .0076
Tetervin (rf-afere-"nc-e” 5) | T .'6077

Present report h - - .@OBO
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These values are gll within the probahle limits of accuracy of
experiment. :

The drag coefficient Ffor an NACA 0012 airfoll at zero angle
. of attack and the corresponding trans’tion—point locations have
been measured at a number of Reynolds numbers. These measurements
sre tabulated in reference 5 along with the theoretical drag
coefficients obtained by several theoretical methods.. The results,
together with- the numerical values calculated as inﬂtcated in the
present report, are presentsd in table II. It is believed that the
differences betwsen the numerical veluss of the various methods
leave little choice as to the relative accuracy. Any decision to
use ole method in preference ‘to ths others mugt rest, for the
present, on convenlence of application. The procedure of the
present report requires no approximations to the veloclty distri—
bution over the mirfoil and it is readily applied to calculating
both the growth of the laminar and turbulsnt boundary layers as
well as computing airfoil sectlion drag coefficienu.

The calculation of sirfoil section drag coefficient for
alrfolls at speeds reguiring the inclusion of compressibility
effects was first given by Young and Winterbottom (reference 10).
The singles numerical example considered In this reference is an
18.5-percent--thick symmetrical Jouwkowaki section st zero angle of
attack. The assumption was made that the transition point is G.k
percent of, the  chord from the leadling edge =nd that the Reynolds
number is equal to 107. Veloclty distributions were used for
potential flow and at a Mach number of Q. 685. TFor these two cases
_the calculated dreg coefficients were 0.0089 and 0.0091, respectively,
while the present report gave, for the seme data, the values 0.0089
and 0.0093. Thus, both methode 1nd;cate that at subcritical Mach
numbers the introduction of compressibility effects into the compu—
tations brings sbout only a slight increase in the airfoil section
drag coefficisnt. .

vrag of Bodiss of-Revolution

The problem of bouné .ry—layer growth and the dsterminstion-of
dreg coefficient for bodies of revolution is more complex than for
airfoil sections, since it is necessary to teke into consideration
the dimensions of the bedy as well as the velocity dlstribution.
The method derived in the present report furnishes a procedure
which parsllels closely the anglysis derived for en airfoil section
and, with lltile increase in intricacy, embraces compressibility
effects. In order to compare results obtainad by the present msthod
with results glven in refersnce 12, drag coefficienta of the Akron
aeirship shaps were computed at a variety of Reynolds numbers end
transition points: These results are presented in table ITI along
with the corresponding drag coefficients obtained by Young for "the
game configurationa. (For convenignce of comparison, .Young's '
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convention of basing the drag coefficient on ths body surface area
was adopted. This convention differs from those used by the NACA
which bases the drag coefficient on either the volume to the two-—-
thirds power or on the projected frontal arsa.) It is noted that
for transition pointes far forward the difference between the results
for identical configurationa, as cbtained by the present method and
that of Young, incremses with the Reynolds number. This imnlies
that the d4ifference between the two methods arises in the calcula—
tion for the turbulent layer and is probably brought about by the
uso of the averagling method assoclated with the local skin-friction
coefficient.

Very few experimenta have been conﬁucted on bodies of revolu—
tion at zero angls of attack to determins tho location of transi-
tion and the corresponding drag coefficient: In reference 21 the
drag-~coefficient measuremsnts for the Akron airship shape at three
Reynolds numbers of the order of 10,000,000 ars glven. Boundary--
layer surveyes indlcated that in each of thess three cases the
transition from laminar to turbulent boundary—layer flow cccurred
at T percent of the body l~ngth from the leading edge. In
reference 22 drag coefficients are given-at the same three Reymolds
numbers for a metal body of virtually the same shape. These latter
megsurements are considerably largsr, a fact which is difficult to
explain bacause the pressure distribution over the forward % percent

of the body is Bo very favorable that at these moderate test Reynolds

numberg 1t 1s improbeble that transition could move significantly
ahead of the T-porcent station. For the serles of measurements
reference 22 indicates that the wind-tunnel-interfersnce effect was
of minor importance. The wooden model was of polygonal cross
section; whereas the metal model was & true body of revolution but
this would seem to bo unimportent. Assuming that transition
occurred at 7 percent of the body length from the leading edge and
using the experimental pressure dlstribution of reference 21, the
drag coefficient of the Akron shape was calculated at ths three
test Reynclds numbers.

In the following table the calculated valuss are comparod with
tho two eets of experimsntal values.

Reymolds . 1353 x 108 | 15.0 x 10% | 17.3 x 108

numbar

‘Wooden -0:0198 0.0193 0.0190
moadel T .

model .0228 .0223 .0219

Theory .crae : .0217 .0212

e
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It is seen that ths calculated values 1lie between the 'bwo sets of
experimsntal data.

Raw data from wind—tunnel sxperimenta on bodies of '_revoluf._ion
generally indicate a change in the absolute valus of the pressure
cosfficlent as the Mach number increases but the masgnitude-of this
Increase is such that it may very well bs attributeble to wind—
tunnsl--wall effects. There is a difference of opinion between
various authors as to the sffects of comvressibllity on the velocity
digtribution over bodies of revolution Por analyses have besen
prasented both affirming end denying that pressure coefficients
rise with- 1n.crea.sing Mach muwmbers. These differences have been
resolved by J. G. Herriot. In referencs 23 he ghows by means of
linear perturbation theory that, for very slender streamlline bodles
of revolution in a uniform stream of compressibls fluid, the’
pressure coefficiant at the surface of the body is slmost independ—
ent of Mach mumber. The egquatlions of ths present report, together
with the result that the velocity distribution is independent of
Mach number, were used to determine the effect of. compressibility
on the calculated drag coefficient for the Akron shaps. For tranasi-
tion point at 25.7 psrcent of the chord from the leading edgs,
Reynolds number equal to lO and free—stream Mach number equal to
0.7, this configuration had for calculated drag coefficient the
value 0.0018%k as coumpared with 0.00198 for ths incampressible case.

In the presentation of the theory 1t was noted that the method
developed for computing the growth of the -boundary layer over bodies
of revolution breaks down in the vicinity of the tail end. Vhen
the drag of the Akron shape was being compubted it was observed that,
over a rangs of Reynolde numbers from 10% tu 10%® and transition
points from the leadlng edge to sbout the midchord position, in the
step-by—step integretion over the lasgt 20 percent of the chord the
quantity cp[2x(r/1}] varied almost linserly with x from its
value et the 80-percent—chord station to zero at the trailing edge.
In reference 12 this is also shown for Reyno]_.ds nmber equal to 108,
When this essumption was Ineerted in the differential eguation for
® 1t was possible to interrats ths equation directly and the .
results obtained by the direct integration were in good egreemsnt
with values obtainsd by the step-by—step integration of the original
oguation. It is belisved that for practical applications the -
simplified procedure based on the essumption of a linear variation
of cr [Qﬂ(r/l)] will be suffilciently precise:. However, if & body
of revolution,.with shape merkedly different over the rear portion
from that of the ‘Akron, is to be investigated for a rénge of
transition polnts and Reynolds numbers it is suggosted that répre—

sentative cases be computed D using a s ong——by—-step integration
over the last 20 percent of t chord. in thilis manner can

the exactness of ths assumption concerning the linsar variation
of chZJ't(r/I)] be tested.
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Genereal Remarks

In certeln cases it 1s particularly dssirable to know ths
variation of either the thickness or the djeplacement thickmess of
the turbulent boundary layer over a curved surface or a body of
revolution. In order to determine this precisely frum a knowlsdge
of the momentum thicknses distridbution it would be nsecessary, of
course, to have added information about tie variation of the shape
factor E and the velocity distribution through the boundary layer.
In reference 24, von Doenhoff and Tetervin have discussed certain
aspecta of this wnroblem thoroughiy, and have presented an empirical
differentlal equation that, wher used Wwith the momsntum equation
and the skin-friction relation, permits tracing the development of
the turbulent boundary layer to the separation point. The calcu—
lations necessary for the solution of thase eqyations ars, however,
cof conasiderable lengbh. :

The relstions in reference 2k maka it possibla to calculate
the variation of momsntum thickness and dboundary-layer--shape factor
accurately. For airfoils at low speeds, this caiculation involves
the use of three equationsa:

L2555 ot R, B

o & _ o =€ (H“E‘Q"s?-(-e au
dx - dx

Cﬂ(D

"L

t2 _2.035(13_1.286)]

The first two of these equations are the basic equations of ths
present report and the last equation is &m empirical relation which
was developed by von Doenhoff and Tetervin. It so happens that the
firet equation is quite inseneitive to the value of H. Thus for
nonssparated flow the variation of 6, as computed by means of the
method of the present roport .on the basis of "the assumption of a
conetant value of H, is quite accurate. Once the chordwise distri— .
bution of 6 18 found the solution of the efpirical equation of
referen~e 24 is simplified considerably. If the numerical integra~
tion of the third eguation above givss a value of H in excess of
1.8 at any chordwisse station in the turbulent regime, the imminence
of turbulent separation can be suspected and the mpthod of the
present report cannot be _applied behinﬂ that _8tatlon.

The present report treats the turbulsnt boundary layer in terms
of the boundary—layer momontum thicknsss, Since, for an unseparated
turbulent boundary layer a value of H, the ratio of displacement to
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momentum thickness, of from 1.h to 1.5 is indicated at low speeds
and, since the effoct of Mach number on H has besen assumsd to be
negligible, the value of the displscemsnt thicknese follows lmme—
diately. In order to obtain the boundary-leyer thickness, consist—
ency demands the use of the typs of velocity dlstribution which was
used in the development ~f the logarithmic relation between the
gkin friction factor § and the boundary-layer momentum thickness.
However, this approach involves theoretical difficulties which can
be circumvented by the following means. It has been previously
noted thaet the logarithmic relationship bstween the local skin—
friction coefficient and thes dboundary—la;~r momentum thickness
leads to a variation of local skin-fiict on ccefficient with

eynolds number which is numerically equal fto that predicted by the
power law developed by Falkmer in refersnce 7. This power law
relationship betwesn local ekin frictvion coefficlent end boundary—
layer momentum thickness icada to the conclusion that the variation
of velocity through the boundary laysr is related to the distance
normal to the surfece by the exprassion .

- ["Lv-\ 1/5
U 8/ .
Using this approximation for the velocity profile 1t immediately
follows the boundary-layer thickness is approximately
8.5(1 + %g) times the boundary-layer momentum thickness.

In reference 4 and 20 it is shown, for a wilde variety of air—
foil sections, that the drag cosfficients and boundary—-layer—
thickness distributions calsulated from the Squire and Young equations
agree well with experimental valuss. - In the resulis that have been
given in the present report, it has been ghown that for various
airfoil shapes and for a represeniative range of Reynolds numbers
the calculated value of drag coefficisnt for each case is very close
to that obteined by previously established methoda, including those
of Squire end Young. Since the method of the present report is of
the ssms accuracy as vrevious methods and is move general and saslily
applied, its use in the calculstion of drag coefficients and boundary—
layer distributions is therefore regommandésd.
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APPENDIX A
Symbols

General Terms .

T

cp local skin-friction coefficient (27/p4Us )

D drag of body (per unit length for airfoil section)
thenmal conductivity

M Mach number of free etream

Pr Prandtl’s nymber /-AR{>

9y dynamic pressure of fres stream («po 2)

u local_velocitx irside boun@ary_leyer or in wake -

Ub-' velocity of undisfurbed stream _

V) local velocity outside boundaxy laver or at edge of wake
i} nondimensional velowity ratio (U/U, )

7 ratio bf'specific heats [(cpfey) = 141

& boundary-layer. thickness. - . .. .- : . s
N .
t skin-friction fector.v(deQ/T)E

Ho .coefficienb"of viscosity in free'etreém;{f .

“w. coefficient of viscosity at wall
Po density in free etream -
py density Just ontsiQe equndary:leyer;

p  density inside boundary'layer or ﬁeke:'

ol

nondimensional density ratio (pU/po

T skin friction rer unit ares

Airfoil Sections

c airfoil chord

cy . section profile—drag coefficient (D/—po 20)
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H  ‘boundary-ldyer shaps parameter (%* /e)

R, Reynolds number based on chord length ( )
v varieble introduced in equation (19)

x distance along air;oil chord - .

z varia.'ble x in nondimensi onal terms (x/c)

¥y distance measured perpendicularly -5 alrfoll surface or to
center line of waks

«}

varieble y in nondimensional térms _(y/c)_ _

z verieble introduced in equation {12) |

5% d.is lacement thicknsss | 1 - 82N -I ’
P I (-89

e momsntum thicknees[fﬁ pl (l E)dy]

®  momentum thickness “tn nond.;msnsiona.l terms (6/c) = . .

Beodies of revolution
A  surface area of body e

Cp total drag coefficient (P/Zo,U,%A) o

Cp total drag cosfficient (D[épOUOZf/S)

o

" boundary—layer parameter (%)
3 length of body . .-

r radius of cross section of body

T radiue in nondfmensional terms (r 2)

Ry Reynolds numbsr based. on length of 'bod;f ( Polls )

Vv  volume of body - c
w va.ria‘ble introduced. in eq_uation (h—”)

z distance measured ‘parellel to axis of 'bod.y from: sta.gnation

point

=

M

varisble x In nondimensignal terms _(x/I)

S mmm e wm e
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Yy distance mesasured perpendicular to swurface or Lo center
of wake -

<l

distence y in nondimensional terms (y/l)
z variable introduced in equation (3"()

o angle between tangent to gensrator and axis of body

d.ispla.f'ement area. of bounds.ry 1a.yer .

| . : =
A% }l [2:»: f (l - Do% \ r + 7 cos cr,)dy:! .
t _

displacement ares of walce 1 Err (l - ~.9-(—> ¥ d.:f_]

] variable of integration (@”’n’r)

% nondimsnsional varisble of Antegration (9/?.)

momentum area of 'bo‘mdary layer _

{-211: fs pu (l _ )(r + ¥ cos q.)dy~l

[
i
}

o]
momentum aresa of wake _’_21\' —93-— (1 --5->3r dy ]
- j’f PaUo Uo )
¥  momentum area in nondimensional, terms (i(-’é-)
Subspribts . . . _. . - . _’. RS _ ;_._ N

5 conditions at stagnation point

T.E. conditicns at trailing edge of airfoil or tail of body
revolution

T.P. conditions at transitlion point
w condlition at wall or surface

o froae—stream COﬂditiOn_ﬂ . S e IR P PP

line
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0.8

conditions In laminar boundary layer at arbitrary point x;
conditions at 80O-percent point on axis of body of revolution

conditions in weks where static pressure is that of free stream



CTTD - CAPEENDIX B
Compu—f;‘bi-én Procedﬁi"e for Drag"(}a.lcul.ati:or.x-
1. Alrfoil Section at xfu:"b.‘rd',ra.r"r L* £t Coefficient
A. From- known airfoil thickness 4 giribution or pressure
. distribution determine velucity distribution cor-
responding to desired 1ift coefficient.

B Estimate transit*on—-point location oh ‘each surface by '
" the following: .

(a) For maximum velocity in vicinity of
Jeading edge, transition occurs
at chordwise station correspond-
ing to velocity decrease of from
5 to 10 percent of maximwn velocity.

(b} For maximum velocity in vicinity of mid—
chord, transition occurs near maximum
velocity point or, for largs Reynolds
:numbers, ‘whead of‘ ‘maximum velocity -

. ... . . point at chordw’ee station where local
e - “boundary-leyer Reyholde number attains
" a value of about 8000.

_ ' | [ *T.P.
Rg2 = 22 Be . 1 0.35 M’?-[ 1-1.67 ﬁT_P_% _{ Te.1753

ﬁT_P .7. 1T l -

C. From stagnation point to trensition point the flow in
boundary layer ie laminar; thus at transition point

~ I X7.p.
@FF)g.p.” = et 11 + 0.26 M(1-0.92 UT . E)tf 7 ax
Re Up.p.%**7 | je°
D. Trensform variable to wp p, = &.LQZZBQ.-('Q“;S)T'P.TIT.P.
. _ ST 140.152M2

E. From figure 2 o’btain ZT.P. =.1.60)-I- “'T.P.lnsz.P.

F. For turbulent region, from transeition point to trailing
edge, tha growth of z ie glven by

©ovms e o o

2pp. =2 T.P. L2k B " T'Eé'ﬁ‘» o
T.E. = Ir.P. U 275 L
T.E. " T1v0. 1501 Up.5.° %o

iR n ' Akl F . — i mne

i
i
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1

) -1 —
where D= I:l + -'-""2’—:L M2 (1—32):, ' x [l+.3é'l€2 (1-1T2)]

G. At trailing edge obtain L cox‘rqspcnding to
Zp g, from f*gure 2. '

H. Section drag cosfficient is obteined from

2(1+0.15242)wp . /= ‘2.2
°d =IO R, (UT.E.)

2. Bodies of Revolution at Zero A.n;gle of Attack

A. TFram body thickness distr{but’'.m-or pressure distri—
bution determins velocity dietribution.

B. Transition from laminsr tc turbulent flow 64curs
roughly at chordwise station where lozal _boundary-
lgyer Reynolds number attains a vaiue of 8GCOO.

5.3 R [ roo. | ET.B.
Rg® = =120 1_5 ) 1-0.35M3 1-1,6TUT.P.2]‘_' - AR 174
Ur.p. 2o 7o

0. From stagnation po‘fnt to-transition’ point the flow 1n
boundary layer is laminar : thus at transition voint

_ 0.43 | { AP R }
) ) 2 = . . 1 + 0.2€ M* (1-0.92 Tp._p,
(o 2y, B RUpp o imppc U ( o >-

J[ET.P- _I_‘a 38.17& =
S .
L. 075R;

D. Transform variable to WT-P- 3-]:(3—5-?21\—{5 %)T_P_ﬁT‘P.
. . 1D -

"B From Pigre 2 obtain zpp = 1.604 wp p tnwp p.
F. For turbulent region. from trasition point to 80—
percent axial station, the growth of 2z 1is given
by
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where
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5 8/Fm p\l.22 1.21 R,
_ T.P.) ( T-P.> L
Zo.8 Z‘I‘.P.(‘.ﬁ 7 ¥ (1+0.152M2)T, , g°
To.s 0.8 . -8

T3
p=1[1+ -7'—;-1- M2 (1--‘52)}7 2 {1+ -2’= M2 (1-T2)]

G. From figure 2 obtain ¥o.s corresponding to Z,.8

H. Transform varflable to

= = - ONTF oW, 140.152 M2
(bo a8 = 2n To '8 90 5 = Cc.8 o.e( _5 )
. «8 "0, - 4.075 R;Bo. o .n

I. From BO-percent axial station to trailing edge, growth
of ® is found from

5 =T To.8 )3-5 fo.8 ) 0.766(27%; o) Bo.8U 0.8°
T.E. °.8\ Ty x. PT.E. 10®{w, o)  Pr.E.Ur.E.%
T.E. _ '
(l—i) %—-U———— 1.5 X
0.8 T.E. _

J. The drag roefficient of the body of revolution, based on
the volume to the two-thirds powsr, is then

Cp = Zr.ulrp. -v;;z;z-? (I_TT.E)S'E
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ATRFOIL SURFACES CQMPUTED BY VARTOUS METHODS

TABIE T.- COMPARISON OF SECTION DRAG CCEFFICTENT FOR SEFARATE

_.Section dra.g coafficient by Cd.

!

Thickness : Reynolds | ! agrpgzze Blu'g;:g& Re:. grence 2 | Raferen.ce L Present raport
nord | pomber TILOE e DT ) W Foport |
¢ - xfc of T, P, | xfc of T, P, | Upper Lower Upper | Lower | Upper | Lower

| surface | eurface | surface | surface | surface | surface
i H i
0 | 168 0 0 | 0.0046 | 0.0046 { 0.0046 | 0.0046 | 0.0047 | 0.0047 |
0 ;108 2 2. | .00kl 00k, | ,00ke .00k2 L0040 | ,00k0
0 i 10° R ah 0036 | .0036 ' .0034 | ,003k .0035 | .0035
0 ;107 0 0 0030 , .0030 ; .0030 { ,0030 .0030 ; .0030
0 P07 2 .2 L0026 1 L0026 ! ,0025 ! .0025 L0026 | 0026
0 o s T 002l | w0022 | .ooel | Looed | oeel | tooel
0 5 X Jo" 0 0 . 002k 002k | L0023 , .0023 .co2k | 008k
1k 105 JAT7 77 0065 | .0050 | - -0063 | .0050 L0063 | 0049
1} 10% .376 376 0052 | .00BL i .0050 | .o0ko | L0051 | .OOLO
1k 10 7T 177 0041 .003L | ,00k0 ; .003L L00k1 ;0031
Ak b 107 .376 .376 ,0031 0023 | ,0030 | .0023 .0031 * 0023
25 1 1® 189 196 0091 | L0066 | .00GL | .0065 | .00B9 | .006k
.25 { 108 .386 »396 L0067 "L L0050 I .,0065: ,0Qhkg L0066 i .0049
25 .17 .189 .196. L0057 | ..00K i .ooso-i ,00k1 .1 .0059 | .o0k2
25 | 107 .386 . 396 .0038 . . 0029 l' +0038:; .0029 .0039 i ,0029

- o et e ] e 0y er———— i —— ]t

20TLY "ON T TOVR
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TABLE IT.- COMPARTSON CF EXPERTMENTAL DRAG COEFFICIENTS FOR
NACA 0012 ATRFOIL SECTION AT ZERO ANGLE CF ATTACK

WITH VALUES CALCULATED BY SEVETAL METHODS

.....

Section drag coefficient cd
Reynolde Expertmental lalculated |oaleulated | Caloulated C;iggiized
% 10-8 mea.‘suremer__l’; reference 2 |reference 3{ reference 5 | . report
"

2.675 0.007L | 0.007k 0.0067 0.0069 0.0067
3.78 | L0070 | 007" | io065 | .00t | boror 7
5.350 L0068 .0071 ., .0069 | .0070 .0068 .
7.560 L0067 | .oorr | .0069 .0069 .0067

TABLE IIY.— THEORETTICAL DRAG COEFFICIENTS OF AKRON
ATRSHIP SHAPE CALCULATED AT SEVERAL REYNOLDS
L HUMBERS LND AT VARIOUS TRANSITION-—
POINT LOCATIONS '

: | _Drag coef‘ficient ca

Reynolds i Trensition | Present ' Reference 12 |

number | percent 1 | report ) |

- — 3 - -. - ) :._' -t '—'.'!.-—"’"“"'—“-"—"““"""'—‘E
108 E L6 ! 0.00502 } 0.00508

107 | h.6 | ,00343 | .00335 '
108 | 4.6 i .oo2us ! .00235

108 i 25.7 | .oou3B «  .oouk& !
107 25.7 : ,0028k ! - .00279
108 I e5.7 i .00198 ! .0018g

10° i 53.4 :  ,00312 ¢ .00316 I

107 I 53.4 4 .00173 - .00176 ,

i 108 ; 53.4% 1

Neloa kRN .00115
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Figure 1.- Airfoil section with boundary layer.
NATIONAL ADVISORY COMMITTEE
FOR AERONAUTICS

A

_Uo T.P. .
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Figure 3.~ Body of revolution with boundary layer.
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(a) Values of z from 106 4o 106

Figure 2 (a2 to ¢).- Grapk for evaluating w from z for turbulent boun-
dary layers.
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Fig. 3b

NN

o g x 106 *

-

ss
8
:

¢] 10 <0 30 40 50
w x10-9

{v) Values of z from 108 to 107
Figure 2.- (Qontinued).
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(c) Valuee of £ from 107 to 108
Figure 3.- (Concluded).



